Object Oriented Support for Jim Tcl
OVERVIEW
The pure-Tcl oo package leverages Jim’s unique strengths to provide support for Object Oriented programming.
The oo package can be statically linked with Jim or installed as a separate Tcl package and loaded with:
package require oo
DECLARING CLASSES
A class is declared with the class
proc as follows.
class myclass ?baseclasses? classvars
This declares a class named myclass
with the given dictionary,
classvars
, providing the initial state of all new objects.
It is important to list all class variables in classvars
, even
if initialised only to the empty string, since the class makes
these variables available in methods and via [myclass vars]
.
A list of zero or more base classes may also be specified from which methods and class variables are imported. See INHERITANCE below for more details.
Declaring a class creates a procedure with the class name along with some related procedures. For example:
. class Account {balance 0} Account . info procs Account* {Account get} {Account methods} {Account eval} Account {Account new} {Account destroy} {Account vars} {Account classname} {Account classvars} {Account method}
Notice that apart from the main Account
procedure, all the remaining procedures (methods)
are prefixed with Account
and a space.
PREDEFINED CLASS METHODS
Decaring a class pre-defines a number of “class” methods. i.e. those which don’t require an object and simply return or manipulate properties of the class. These are:
- new ?instancevars?
- Creates and returns new object, optionally overriding the default class variable values.
Note that the class name is an alias for
classname new {}
and can be used as a shorthand for creating new objects with default values.
- method name arglist body
- Creates or redefines a method for the class with the given name, argument list and body.
- methods
- Returns a list of the methods supported by this class, including both class methods and instance methods. Also includes base class methods.
- vars
- Returns a list of the class variables for this class (names only). Also includes base class variables.
- classvars
- Returns a dictionary the class variables, including initial values, for this class. Also includes base class variables.
- classname
- Returns the classname. This can be useful as [$self classname].
Class methods may be invoked either via the class name or via an object of the class. For example:
. class Account {balance 0} Account . Account methods classname classvars destroy eval get method methods new vars . set a [Account] <reference.<Account>.00000000000000000001> . $a methods classname classvars destroy eval get method methods new vars
PREDEFINED OBJECT METHODS
Decaring a class pre-defines a number of “object” methods. i.e. those which operate on a specific object.
- destroy
- Destroys the object. This method may be overridden, but note that it should delete the object with {rename $self “”}. This method will also be called if the object is reaped during garbage collection.
- get varname
- Returns the value of the given instance variable.
- eval ?locals? body
- Makes any given local variables available to the body, along with the instance variables, and evaluate the body in that context. This can be used for one-off evaluation to avoid declaring a method.
CREATING OBJECTS
An object is created with the new
method, or simply by using the classname shortcut.
If the new
method is used, the variables for the newly created object (instance variables)
may be initialised. Otherwise they are set to the default values specified when the
class was declared.
For example:
. class Account {balance 0} Account . set a [Account] <reference.<Account>.00000000000000000001> . set b [Account new {balance 1000}] <reference.<Account>.00000000000000000002> . $a get balance 0 . $b get balance 1000
DECLARING METHODS
In addition to the predefined methods, new methods may be decared, or existing methods redefined with the class method, method.
Declaring a method is very similar to defining a proc, and the arglist has identical syntax. For example:
. Account method show {{chan stdout}} { $chan puts "Balance of account is $balance" } . $b show Balance of account is 1000
All instance variables are available within the method and any changes to these variables are maintained by the object.
In addition, the $self variables is defined and refers to the current object. This may be used to invoke further methods on the object. For example:
. Account method show {} { puts "Balance of account is [$self get balance]" } . $b show Balance of account is 1000
Notes:
- It is a bad idea to unset an instance variable.
- In general, you should avoid redefining any of the pre-defined methods, except for
destroy
. - When accessing the caller’s scope with upvar or uplevel, note that there
are two frame levels between the caller and the method. Thus it is necessary
to use
upvar 2
oruplevel 2
INHERITANCE
For each base class given in a new class declaration, the methods and variables of those classes are imported into the new class being defined. Base classes are imported in left to right order, so that if a method is defined in more than one base class, the later definition is selected. This applies similarly to class variables.
Within a method, super
may be used to explicitly invoke a
base class method on the object. This applies only to the last
base class given. For example:
# Assumes the existence of classes Account and Client . Account method debit {amount} { incr balance -$amount } . class CreditAccount {Client Account} {type visa} CreditAccount . CreditAccount method debit {amount} { puts "Debit $type card" super debit $amount } . set a [CreditAccount] <reference.<Account>.00000000000000000001> . $a debit 20 Debit visa card . $a balance -20
In the CreditAccount debit method, the call to super debit
invokes
the method Account debit
since Account is the last base class listed.
OBJECT LIFETIME/GARBAGE COLLECTION
Objects are implemented as lambdas. That is, they are procedures with state
and are named as references. This means that when an object is no longer
reachable by any name and garbage collection runs, the object will be
discarded and the destructor will be invoked. Note that the garbage collector
can be invoked manually with collect
if required.
. class Account {} Account . Account method destroy {} { puts dying...; rename $self "" } Account destroy . proc a {} { set b [Account]; return "" } a . a . collect dying... 1
CLASS METHODS/CLASS STATIC VARIABLES
All methods defined with method
operate on objects (instances).
If a class method is required, it is possible to simply declare one with proc
.
The method dispatcher will automatically be able to dispatch to this method.
Using this approach, it is also possible to add class static variables by
defining static variables to the proc. Although strictly these variables
are accessible only to that proc, not the class as a whole.
For example:
. class Account {} Account . proc {Account nextid} {} {{id 0}} { incr id } Account nextid . Account nextid 1 . Account nextid 2 . set a [Account] <reference.<Account>.00000000000000000001> . $a nextid 3 . $a eval { $self nextid } 4
HOW METHOD DISPATCH WORKS
All class and object methods are name “classname methodname”.
The class method dispatcher is named “classname”. When invoked with a methodname, it simply invokes the method “classname methodname”.
The method dispatch is via a two step process. Firstly the object procedure is invoked with the method name. This procedure then invokes “classname method” which sets up the appropriate access to the object variables, and then invokes the method body.
EXAMPLES
tree.tcl
The tree
package is implemented using the oo
package.
See the source code in tree.tcl and a usage example in tests/tree.test
Of particular note is how callbacks and recursive invocation is used in the walk
method.
examples/ootest.tcl
A comprehensive OO example is provided in examples/ootest.tcl.
It can be run simply as:
$ ./jimsh examples/ootest.tcl